(-5x^2+2x-6)+(-5x^2+2x-6)=6x-14

Simple and best practice solution for (-5x^2+2x-6)+(-5x^2+2x-6)=6x-14 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-5x^2+2x-6)+(-5x^2+2x-6)=6x-14 equation:



(-5x^2+2x-6)+(-5x^2+2x-6)=6x-14
We move all terms to the left:
(-5x^2+2x-6)+(-5x^2+2x-6)-(6x-14)=0
We get rid of parentheses
-5x^2-5x^2+2x+2x-6x-6-6+14=0
We add all the numbers together, and all the variables
-10x^2-2x+2=0
a = -10; b = -2; c = +2;
Δ = b2-4ac
Δ = -22-4·(-10)·2
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{21}}{2*-10}=\frac{2-2\sqrt{21}}{-20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{21}}{2*-10}=\frac{2+2\sqrt{21}}{-20} $

See similar equations:

| X+4=1/3y | | R=2200/528x2 | | 0=-0.2x^2+41x-1600 | | R=528/2200x2 | | 21/2n+3/8=6n-41/2+1/4n+287/8 | | 4x+4-2x+2=4 | | 4x2−4=5 | | 4x^2−4=5 | | 5x^2-20x+12=-3 | | 100=-8t+100 | | Y=405.92x+5,000 | | Y=405.92x-5,000 | | -6p+9-p=-4p-3-3p+12 | | 3h-2h=7/3 | | 8-2x+7x=10 | | 16+v=29 | | 16000x/2x=0 | | 6-4x+4x=10-2x+4x | | 3y+14.6=40.6 | | 1=x/20 | | 558375-y=55435 | | 2(x+3)=7(x+5) | | -(x+2)-3=-2 | | 5x+6x-1=-12 | | a/3-6=-1 | | 15^x+9=16^-6x | | 3(4d+1)-9d=6(2d | | 50x^2+15x+1=0 | | 0=-4(x-2) | | 5x+15=x+25 | | 4x-15+8x=-37-2 | | X^2+0.3x+0.02=0 |

Equations solver categories